Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

What Are The Common Ways In Literature To Form Benzannulated Rings?

Covered in this GM:
- Focus on Reductive Cross-Coupling
- Major focus on usage of Ni\(^{II}\) and Ni\(^{0}\) catalysts
- Use of Fe, Cu, Pd, Ru Catalysts
- Applications in Total Synthesis
- Hydroalken-, Acyl- & Arylations
- Exploitation of Minisci reactivity

Retrosynthetic Case Studies:

Not Covered – Honorable Mentions in Annulation Strategies:
- Macrocyclizations - 2020 - Reisberg
- Saturated Heterocycles - 2017 - Chu
- Hetero and All-Carbon Spirocycles - See 2017 & Cherney 2012
- Cycloisomerization in Synthesis - Dam 2008
- "Anti-Baldwin" Cyclizations - 2013 - Wengryniuk

Advances in [2+2+2] Cycloaddition:
Chem. Soc. Rev. 2011, 40, 3430

Intramolecular Reductive Coupling Reactions Promoted by SmI\(_2\)

Synthesis of Cycloalkenes by Intramolecular Titanium-Induced Dicarbonyl Coupling

Nickel-catalyzed Reductive Coupling of Alkynes and Epoxides
J. Am. Chem. Soc 2003, 125, 8076

A Journey of Kobayashi Aryne Precursors
Chem. Rev. 2021, 121, 3892

SnAP reagents for one-step synthesis of medium rings
ACIE 2013, 52, 1705
Nat. Chem. 2014, 6, 310
Org. Lett. 2014, 16, 1236
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Nickel mediated Intramolecular reductive C–C coupling

Stereoactive synthesis of a *Podophyllum* lignan core
Chem. Commun. 2018, 54, 2040

Proposed Mechanism:
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Intramolecular Nickel-Catalyzed Reductive Coupling enables enantiodivergent synthesis of Linoxepin Chem. Commun. 2024, 60, 694
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Intramolecular Nickel-Catalyzed Reductive Cross-Coupling of Benzylic Esters
Angew. Chem. 2016, 128, 6842

Nickel mediated Intramolecular C–S coupling of Thiols and Thioacetates
Org. Lett. 2013, 15, 550

Nickel-Catalyzed Reductive Cyclization of Alkyl Dihalides
Org. Lett. 2014, 16, 4984

Nickel-Catalyzed Intramolecular Amination
Org. Lett. 2003, 13, 2311
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Nickel catalyzed intramolecular Hydroalkenylation
Org. Lett. 2021, 23, 7900

Nickel catalyzed intramolecular C–H/C–H oxidative coupling
ACS Catal. 2021, 11, 12384

Nickel-NHC Catalyzed Intramolecular Hydroacylation
JACS 2004, 126, 11802, ACIE 2012, 51, 10812

for Palladium Variant see: Organometallics 2008, 27 4841
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Copper-Catalyzed Inter- and Intramolecular reductive Cross-Coupling

\[
\text{CuI (10 mol%) LiOMe (1 eq), THF, 0 °C, 24 h}
\]

[A] TMEDA (20 mol%) [B] DPPM (20 mol%)

X = Br; 54%

X = OTs; 94%

Iron-Catalyzed Inter- and Intramolecular reductive Cross-Coupling

\[
\text{FeCl}_3 (1-5 mol%) iPrOH, DCE (R = H or Aryl)
\]

\[
\text{FG}_\text{OH}
\]

\[
\text{FG}_\text{OH}
\]

Iron-Catalyzed Intramolecular Reductive Coupling of Arylalkenes

Proposed Prins-MPV-type mechanism

Proposed Prins hydride transfer

Hydropyridation of Olefins by Intramolecular Minisci Reaction
Org. Lett. **2017**, *19*, 2290

11 examples 24-89%

Co-Catalyzed Hydroarylation of Unactivated Olefins
Org. Lett. **2016**, *18*, 3622

\[
\text{[Co(Salen)] (3 mol%) Me}_3\text{NFPY-OTf (2 eq)}
\]

Me$_3$NFPY-OTf
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Rapid Access to Tetracyclic Core of Wortmannin via an Intramolecular Olefin Coupling *Org. Lett.* 2020, 22, 6308

Halenaquinone

Viridin

Wortmannin

Li, NH₃, t-BuOH, Et₂O, 30 min

-78 to -50 °C

isoprene, then NCCO₂Et 69%

LiOH

THF/MeOH/H₂O (4:1:1), 50 °C

then citric acid 91%

LiOH

THF/MeOH/H₂O (4:1:1), 50 °C

then citric acid 91%

OTBS

H₂ (balloon)

Pd/BaSO₄ (3 mol%)

MeOH, r.t.

i. Pd(OAc)₂ (10 mol%)

dpff (11 mol%)

Et₃SiH, THF/DMF (1:8:1), rt, 87%

MeOH, r.t.

OTBS

TMSCHN₂

PhH/MeOH, rt

81% for 2 steps

NaH, Commins' reagent

DME, rt 92%
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Philipp Neigenfind

Intramolecular Palladium-Catalyzed:

Stille-Coupling: J. Chem. Soc. 1999, 1235
C–H Arylation: J. Am. Chem. Soc. 2010, 132, 10706
C–O Bond Formation: J. Am. Chem. Soc. 2001, 123, 12202
C–N Bond Formation: Tetrahedron 1996, 52, 7525

More to read in: Chem. Rev. 2006, 106, 4644

\[
\text{9-BBN, THF, } 0 \, ^\circ \text{C, 4 h then PdCl}_2(dppf) (1.5 mol\%) \text{ NaOH (3 eq.)}
\]

86%

Intramolecular Palladium-Catalyzed Homocoupling of Aryl Halides Org. Lett. 1999, 1, 1205

\[
Pd(OAc)_2 (2-5 mol\%) \text{ P(o-tol)}_3 (2-5 mol\%) \text{ Hydroquinone (50 mol\%) Cs}_2\text{CO}_3 (1 eq.), DMA 75\, ^\circ \text{C, 48 h}
\]

82%

Palladium-Catalyzed Intramolecular Reductive Cross-Coupling Chem. Eur. J. 2014, 20, 8308

\[
\begin{align*}
&[\text{PdCl}_2(dppf)/\text{TFP LiBrCs}_2\text{CO}_3] \\
&\text{DMA, 150 } ^\circ \text{C, } \Delta
\end{align*}
\]

Helical Alkenes via Palladium Catalyzed Domino Reaction

Org. Lett. 2012, 14, 3648

More to read in: Chem. Rev. 2006, 106, 4644

Intramolecular Palladium-Catalyzed:

Stille-Coupling: J. Chem. Soc. 1999, 1235
C–H Arylation: J. Am. Chem. Soc. 2010, 132, 10706
C–O Bond Formation: J. Am. Chem. Soc. 2001, 123, 12202
C–N Bond Formation: Tetrahedron 1996, 52, 7525

More to read in: Chem. Rev. 2006, 106, 4644
Metal Mediated Intramolecular Cross-Couplings To Access Benzannulated Rings

Intramolecular Minisci Acylation under Silver-Free Neutral Conditions
Org. Biomol. Chem. 2017, 15, 2199

![Chemical Structure](image)

Sequential Isomerization and Ring-Closing Metathesis
Tet. Lett. 2003, 44, 6483

![Chemical Structure](image)

Decarboxylative Intramolecular Arene Alkylation using an Organic Photocatalyst
– J. Org. Chem. 2019, 84, 8360

![Chemical Structure](image)

N-Acylamide Methylenation-Enamide Ring-Closing Metathesis
J. Org. Chem. 2006, 71, 7028

![Chemical Structure](image)

Deoxygenative Intramolecular Minisci Reaction to Access Fused Heterocyclic Scaffolds
– Eur. J. Org. Chem. 2023, 26, e202201176

![Chemical Structure](image)

Couple-close construction of polycyclic rings from diradicals
– Nature 2024

![Chemical Structure](image)

Conclusions - Lessons Learned - Open Questions:

- Wide array of Strategies to form Benzannulated Rings involving various metals
- Most Processes Mediated by Nickel are proposed to involve Ni⁰
- Many Methods only mediocremly Strategic due to laborious Starting Material Synthesis
- How to Overcome Simple Radical Reactivity (e.g. Minisci) through directed Cross-Coupling Strategy?
- Utilization of Decarboxylation possible?