First off – What are peptides, and who cares?
– Peptide ('peptid') - any of various amides that are derived from 2+ amino acids via the joining of one acid with another free amine
– BUT much more variability can be had than in canonical cases:

- As drug compounds, peptides often boast potency, selectivity, solubility and low toxicity
- Typically have low oral bio-availability, plasma/cellular stability, t1/2
- Downsides of linear peptides (enzymatic stability can often be overcome via cyclization
- Beautiful/unique structures not seen in other classes of 2° metabolites

What to expect from this GM:
– Coverage of some key issues in complex peptide small molecule synthesis
 – Key methodology (tactics) to address problems
 – Case studies of relevant syntheses
 – Discussion of strategies towards atroposelectivity
 – Focus on small molecule peptides vs. 20+ AA peptides

Topics not covered:
– Peptide couplings, macrocyclizations, ligations; see Reisberg, 2020 & Malins, 2016 GMs
– Exhaustive coverage of every interesting peptide NP or strategy
– Directed evolution or engineered enzyme ncAA synthesis
– In-depth treatment of every methodology shown

Key Strategic Problems:
(1) Noncanonical Amino Acid (ncAA) Problem
Common ncAAs (not exhaustive – see ACIE, 2013, 52, 7098)

hydroxy amino acids
- α-OH-Gly
- β-OH-Xaa

methylation amino acids
- aminoisobutyric acid (Aib)
- Ser(Me)

homo-amino acids
- hPhe, hTyr
- piperolic acids (Pip)

N-containing side chain
- ornithine (Orn)

Factors to Consider:
– Commercial availability often low
– Self-reactive ncAAs (i.e. Orn)
– How to synthesize asymmetrically - racemization (Phg)

(2) The (Het)Arene Connection Problem

Factors to Consider:
– Order of connection
 - pre- or post- peptide bond
 – Atroposelectivity + choreography
 – Inherent reactivity of (het)arene
 – Synthesis of AA analogues

These 2 problems are, of course, intertwined
Bank 1: Asymmetric Strecker Reactions

2 reviews:
- Chem. Rev. 2011, 111, 6947
- Chem. Rev. 2003, 103, 2795

Chiral Non-Racemic Imines
- Tet. Lett. 1995, 36, 2859

Chiral Lactic Aldehydes

Takeaways:
- Many ways to accomplish this (sulfinimines, transition metals, organocatalysis)
- Downsides: hydrolysis is sometimes difficult, CN use

Bank 2: Asymmetric Hydrogenation of Dehydroaminoacids

Review: Synthesis 2006, 1, 1

Case Study: Dong’s Method + Dichotomine E Synthesis

Dichotomine E
- 20:1 d.r.

Note:
- chAA as turn-inducing element for macrocyclization

Chiral Amine Auxiliaries

Nature 1963, 200, 1201

Takeaways:
- Many ways to accomplish this (sulfinimines, transition metals, organocatalysis)
- Downsides: hydrolysis is sometimes difficult, CN use
Tactics and Strategies in Complex Peptide Synthesis

Bank 3: Multi-Component Reactions
Application of Passerini Reaction to Cyclotheonamides A–E

Bank 4: Auxiliary Use
Use of Garner’s Aux for the key ncAA in Lucentamycin A

OL 2001, 3, 3301
- Peculiar α-keto homoAA moiety
- Potent (nM), slow-binding serine protease covalent inhibitors

JOC, 2012, 77, 9859
- Unique 4-ethylidene-3-methylproline (Emp)
- Showed no significant cytotoxicity

Takeaways:
- Aux use allows logical, low-risk prep of ncAAs
- BUT many steps required, lots of redox manipulations and PG swaps

what are more elegant ways to accomplish this?
Tactics and Strategies in Complex Peptide Synthesis

Alexandros S. Pollatos

Baran Group Meeting

04/23/2022

α-amanitin
- Among deadliest toxins known (LD$_{50}$ 50-100 µg/kg – 20x KCN!)

Synthetic Challenges:
1) oxidatively delicate tryptathione
2) enantiosel. synthesis of DHIle
3) diastereosel. sulfoxidation

α-amanitin
- Made by C-H borylation
- Immobilized B p-orbital avoids deg.

Trp Problem
- MIDAB
- SPPS

DHIle Synthesis

1. crotylation
2. TBSOTf, lut.
3. OsO$_4$, NMO
4. NaI$_4$

DHIle

1. TBAF
2. LiOH
3. methylimino-diacetic acid (MIDA)
4. Me

Compare to Süßmuth’s:

JOC 2021, 86, 5362

1. SAE
2. TsCl, TEA
3. NaI, Zn(Cu)
4. Boc$_2$O, NaH
5. Tfa-G-OrBu
6. LHMDS, [Ru]
7. NaBH$_4$
8. K$_2$OsO$_4$, NMO
9. TBSCl
10. TMSOTf

Müller’s synthesis employs very similar transform here:

ACIE 2020, 59, 11390

1. TFA
2. KOH
3. mCPBA
40% over 3 steps

4. DHIle coupling
5. Et$_3$NH
6. TBAF
7. macrocycl. 15%/4 steps

α-amanitin
- Made by C-H borylation
- 85% 1:1 syn-cis : anti-cis pushed both fwd

Bank 5: C-H Activations

Case Study: Total Synthesis of α-amanitin

Perrin *JACS*, 2018, 140, 6513

OH
- 1. SAE
- 2. TsCl, TEA
- 3. NaI, Zn(Cu)
- 4. Boc$_2$O, NaH
- 5. Tfa-G-OrBu
- 6. LHMDS, [Ru]
- 7. NaBH$_4$
- 8. K$_2$OsO$_4$, NMO
- 9. TBSCl
- 10. TMSOTf

More solvent-exposed l.p. use bulky oxidant

Immobilized B p-orbital avoids deg.

Müller’s synthesis employs very similar transform here:

ACIE 2020, 59, 11390
Total Synthesis of α-amanitin (continued)

Süssmith's non-Savige-Fontana

BocHN
\[\text{OtBu} \downarrow \text{SO}_2\text{Cl}_2 \]
BocHN
\[\text{OtBu} \downarrow \text{Cl} \]

form Eastern macrocycle, then same end-game

\[\text{α-amanitin}\]

Indole C-H Borylation

see: Veruculogen JACS 2015, 137, 10160
Teleocidins JACS 2019, 141, 1494
+ Hartwig’s work

\[\text{[Ir] dimer \ ligand (bpy, phen-type)}\]

\[\text{HBPin, B}_2\text{Pin}_2\]

\[\text{PinB}\]

\[\text{6-sp}^3\text{-H Activation}\]

\[\text{Pd(OAc)}_2 (20\% \text{ oxone, Mn(OAc)}_2, \text{Ac}_2\text{O or Ar-I}}\]

\[\text{MeNO}_2, 80 \degree \text{C}\]

\[\text{X = Ar, OAC}\]

\[\text{R = Leu, Phe, Ala, ethylGly}\]

\[\text{OL 2006, 8, 3391}\]

D.G. free variant:
ACIE 2017, 56, 1506

Case Study: Celogentin C-H Activation vs

Chen: ACIE 2010, 49, 958

Castle: JACS 2010, 132, 1159

\[\text{Chen uses C-H activation}\]

\[\text{Castle opts for Knoevenagel + 1,4 add’}n\]

\[\text{TiCl}_4, \text{NMM} \quad 68\%\]

\[\text{We will return to this compound for Oxidative Coupling discussion}\]
(2) Arene Connection Problem

Many arene-arene peptide natural products are formed via oxidative couplings between Phe, Tyr, Trp, & His – how can this strategy be applied?

Harran’s Diazonamide A – *ACIE* 2003, 42, 4961

see also: Nicolaou’s synthesis – Classics vol. 2, ch. 20

Strategy: Form D-E juncture in presence of pre-formed A-F system.

Many arene-arene peptide natural products are formed via oxidative couplings between Phe, Tyr, Trp, & His – how can this strategy be applied?

Harran’s Diazonamide A – *ACIE* 2003, 42, 4961

see also: Nicolaou’s synthesis – Classics vol. 2, ch. 20

Strategy: Form D-E juncture in presence of pre-formed A-F system.

Revisiting the Celogetins

Castle: *JACS* 2010, 132, 1159

Chen: *ACIE* 2010, 49, 958

Strategy: Form D-E juncture in presence of pre-formed A-F system.

Harran’s Diazonamide A – *ACIE* 2003, 42, 4961

see also: Nicolaou’s synthesis – Classics vol. 2, ch. 20

Strategy: Form D-E juncture in presence of pre-formed A-F system.

Many arene-arene peptide natural products are formed via oxidative couplings between Phe, Tyr, Trp, & His – how can this strategy be applied?

Harran’s Diazonamide A – *ACIE* 2003, 42, 4961

see also: Nicolaou’s synthesis – Classics vol. 2, ch. 20

Strategy: Form D-E juncture in presence of pre-formed A-F system.
Tactics and Strategies in Complex Peptide Synthesis

Bank 6: Oxidative Couplings (cont.)

Arylomycins *JACS, 2018, 140*, 2072
original: *JACS, 2007, 127*, 15830

![Chemical structure of Arylomycins](image)

The Atropisomer Problem

- Atropisomers can arise in isopeptides from hindered rotation about single bonds
- How can one control chirality in the absence of stereogenic atoms?

Main strategies include:
1. Atropisomeric ‘recycling’ by equilibration and separation
2. Modern atrop-selective cross-couplings
3. Point-to-axial chirality transfer

Key: Order of bond formations is crucial, but difficult to predict

Bank 7: Larock Annulation

Original Larock Annulation

- **Pd(0) or Pd(II) + ligand, inorg. base,**
- **Naseseazines:** *JACS 2013, 135*, 5557
- **Psychotrimine:** *JACS 2008, 130*, 10886
- **Kapakahine:** *JACS 2009, 131*, 6360

Applications in synthesis:

- **Naseseazines:** *JACS 2013, 135*, 5557
- **Psychotrimine:** *JACS 2008, 130*, 10886
- **Kapakahine:** *JACS 2009, 131*, 6360

Important applications in the synthesis of strained indole macrocycles:

- **Streptide:** *JACS 2019, 141*, 17361
- **Chloropeptin:** case study forthcoming

This area is intentionally left blank
Larock Case Study: Complestatin & Chloropeptin I (*)

Key Fragments:

1. Schollkopf aux.
2. HCl
3. Boc₂O
4. LiOH

Strategy:

- S_NAr in presence of D-F system

Takeaways:

- Larock ligand and soluble base key for Ar-Br
- 1st Larock macrocyclization
- Use of AA to generate Phg analogues powerful
A Comparison of Approaches: Classic vs. Modern Vancomycin (Boger)

Strategy: Disconnect D-E first since isom. will not affect A-B & C-D

Key finding: E_a of atropisomers: D-$E < A$-$B < C$-D

Original approach: JACS 1999, 121, 10004

60% 1:1 at C-D but recyclable

Sandmeyer $R = NO_2$ to Cl then Suzuki 77% (2 steps) 1:1.3 at A-B but 3:1 on isom.

CsF, DMSO 65-75% 8:1 at D-E, 1:1 on isom.

Deprotections; peptide couplings

7 steps
A Comparison of Approaches: Classic vs. Modern Vancomycin (Boger)

The Modern Approach: Strategically similar, tactical improvements

JACS 2020, 142, 16039

Improvements to ncAA Synthesis

A-Ring Precursor

original route: low %ee, scalability issues

B2eg2 = \[\begin{array}{c}
\text{O} \\
\text{B} \\
\text{O} \\
\text{O}
\end{array}\]

C Ring Precursor

from phenylglycine

D Ring Precursor

clear fragment improvements, but how did the key connections change?

original fragment synthesis:

JOC 1997, 62, 4721
A Comparison of Approaches: Classic vs. Modern Vancomycin (Boger)

Strategy:
- Disconnection order preserved
- Ligand-controlled atroposelective Suzuki followed by relay

Modern Approach:

\[
\text{Pd}_{2}\text{dba}_{3}, \quad (R)-\text{BINAP(O)}
\]

72-89% ≤ 8g scale

\[
\text{or Pd(OAc)}_{2}, \quad (R)-\text{BINAP}
\]

82-93% ≤ 25g scale

slow addition

\[
\text{DMTMM(H)}
\]

used in couplings
- suppress epim.
- strained lactams

Key Takeaways:
- Original disconnection strategy worked well
- Modern tactics enable better material throughput, kinetic control
- In cases of atropisomeric biaryls, empirical evidence is required (i.e. E\textsubscript{a}’s)
- See also: Nicolaou’s and Evans’ syntheses (Classics, vol. 2, ch. 9)
Tactics and Strategies in Complex Peptide Synthesis

Alexandros S. Pollatos

Baran Group Meeting 04/23/2022

(3) A Look to the Novel Approaches

Bank 8: Chemoenzymatic Oxidation

Hydroxylation as a Handle

expanded scope:

- HO
 - R = Me, OH
 - R = H, Me, Et, CH$_2$N$_3$, CO$_2$Me

Method

JACS 2018, 140, 1165

Polyoxypeptin & Cavinafungin B

Tetrahedron 2019, 75, 3253

Tetrahedron 2018, 74, 6469

Biocatalytic DKR-amino transfer

ACIE, 2021, 60, 17680–17685.

Case Study: Tambromycin – C-H Functionalization vs. Chemoenzymatics

Thomson and Renata Synthesis

1. I$_2$, KOH
2. TIPSCI, LHMDS
3. i-PrMgCl•LiCl

56% over 3 steps

9. Deoxo-Fluor
10. BBr$_3$

41% over 2 steps

3 steps

Tambroline Route – Renata

1. KDO1, aKG, Fe$^{2+}$, O$_2$
2. Boc$_2$O
3. BnBr
4. SOCl$_2$, cat. RuCl$_3$, NaIO$_4$

5. DMA, Δ

36%/4 steps

- Two routes with identical disconnection
- Renata employs enzymatic transforms
- Thomson uses auxiliary

Renata: *ACIE*, 2018, 57, 5037

Thomson: *OL*, 2018, 20, 2369.

Meso-pyrrolidines

- MAO, O$_2$, FAD(H), buffer
- then hydrolyze

ACIE, 2010, 49, 2182

β,γ-difunct. proline

δ-oxidation on γ-methyleleucine,

in situ

NH$_3^+$/BH$_3$

75-88%

β-epimer reacts faster

yields ≥70%, >90% ee

β-branched Phe analogues
Case Study: Tambromycin (con’t)

Tambroline Route – Thomson

1. nBuLi, BuCOCl, Evans aux
2. KHMDS, trisyl azide
3. H₂O₂, LiOH

~$900/g

Takeaways

– Chemoenzymatic approach consists of more steps but traces to more available S.M.
– Traditional approach 13 steps LLS, chemoenzymatic 10 steps LLS

Bank 9: Electrochemical Peptide Functionalizations

excellent reviews: *Peptide Science* 2018, 110, e24049
JACS 2022, 144, 23
Application to synthesis: *Chem. Sci.* 2020, 39, 10752

Parting Thoughts:

– Largest unaddressed problem in the field is ncAA synthesis
– Typical metrics of evaluating syntheses seem not to apply as cleanly
– Other unsolved issues: large-scale structural/shape control, minimization of PGs

and much more