Unique parameters in electrochemistry:
- Electrochemical cell: divided or undivided
- Current and potential: constant current (c.c.) or constant potential (c.p.)
- Electrolyte: various ammonium or alkali metal salts
- Electrodes: anode (oxidation), cathode (reduction)

Topics not discussed:
- Chemically modified electrodes
- Electrodes for inorganic and analytical electrochemistry

1. Electrode material

1-1. General Consideration
- Physical stability
- Chemical stability
- Overpotential
- Suitable physical form
- Cost and lifetime
- Electrical conductivity

1-2. Modes of action of electrodes
- Transfer electrons
- Absorb organic compounds
- Reactivity and product selectivity might be affected by electrode materials.
- Act as reagents
 - Sacrificial anode (source of electron for cathodic reduction)
 - NiOOH, PbO₂ anode
 - Ni and Pt cathode for hydrogenation

1-3. Overpotential
 Overpotential is the potential difference between a half-reaction's thermodynamically determined potential and the potential at which the redox event is experimentally observed.

 Thermodynamically defined potential:
 - Oxygen
 \[\text{O}_2 + 4\text{H}^+ + 4\text{e}^- \rightarrow 2\text{H}_2\text{O} \quad E^\circ_{\text{red}} = 1.23 \text{ (V)} \]
 (vs SHE)
 - Hydrogen
 \[2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2 \quad E^\circ_{\text{red}} = 0.00 \text{ (V)} \]

 Generally, material with large \(\text{O}_2 \) overpotential is used for anode and material with large \(\text{H}_2 \) overpotential is used for cathode.

1-4. Anode material
- Sacrificial anode: Al, Zn, Mg, steel etc.
- Non-sacrificial: Pt, carbon based material (graphite, glassy carbon, RVC, BDD)
Sacrificial anode Source of electron for cathodic reduction

<table>
<thead>
<tr>
<th>Mg</th>
<th>Al</th>
<th>Zn</th>
<th>Fe</th>
<th>Ni</th>
<th>Sn</th>
<th>Pb</th>
<th>Cu</th>
<th>Hg</th>
<th>Ag</th>
<th>Au</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Dissolve when used as anode material

Platinum
- Highly durable under oxidative conditions
- Wide potential range due to the large \(\text{O}_2 \) overpotential
- Most common anode material

Graphite
- Highly stable, but can be eroded under highly oxidative conditions.
- Wide potential range due to the large \(\text{O}_2 \) overpotential
- Absorption or intercalation of organic material may occur.
- Most common anode material

Glassy carbon (Vitreous carbon)
- Amorphous form of carbon
- Very hard (as hard as quartz)
- Good chemical stability and wide potential range

Reticulated Vitreous Carbon (RVC)
- Glassy carbon produced as a form
- Same chemical property as glassy carbon
- Large surface area

Boron-Doped Diamond (BDD)
- Highly durable under oxidative conditions
- Large \(\text{O}_2 \) overpotential (1.1 V) and \(\text{H}_2 \) overpotential (-1.1 V)
- Due to its large \(\text{O}_2 \) overpotential, OH radical and ozone can be generated under aqueous conditions.
- Used for waste-water treatment (complete mineralization of organic molecule using OH radical) and ozone generation.
- Recently introduced to electroorganic synthesis

Other anode material

- Large \(\text{O}_2 \) overpotential, wide potential range.
- Prepared by electrochemical deposition of \(\text{PbO}_2 \) onto conductive materials
- Used for production of inorganic oxidant such as perchlorate, periodate and ozone
- Electroorganic application is oxidation of alkenes, arenes and alcohols

- Prepared by forming \(\text{Ni(OH)}_2 \) on Ni plate
- Anodically stable only under basic conditions
- Oxidation of alcohol and amine proceeds by anodically generated Ni(III) on the electrode.

Carbon sulfide electrode Review: Guillanton, Sulfur Reports. 1992, 12, 405.
- Sacrificial anode
- Used for thiolation of organic compounds
1-5. Cathode material

High H₂ overpotential

Carbon-based material, Pb, Sn, Hg, Cd, Zn
Useful for cathodic reduction of various organic molecules

Low H₂ overpotential

Pt, Ni, Cu, Ag, Fe(steelless steel)
These electrodes are used when H₂ evolution at cathode is desirable.

2. Price of Electrodes

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt foil</td>
<td>Aldrich</td>
<td>1.5 g</td>
<td>$480</td>
</tr>
<tr>
<td></td>
<td>Alfa Aesar</td>
<td>0.025 mm × 25 mm × 25 mm</td>
<td>$107</td>
</tr>
<tr>
<td>Pt coated Ti</td>
<td>ebay</td>
<td>30 mm × 40 mm</td>
<td>$12.8</td>
</tr>
<tr>
<td>Graphite</td>
<td>many</td>
<td>1 lb</td>
<td><$10</td>
</tr>
<tr>
<td>Glassy carbon rod</td>
<td>Alfa Aesar</td>
<td>3 mm × 25 mm × 25 mm</td>
<td>$98</td>
</tr>
<tr>
<td>RVC</td>
<td>KRRaynolds</td>
<td>40 mm × 40 mm</td>
<td>$15</td>
</tr>
<tr>
<td>BDD</td>
<td>windson scientific</td>
<td>3 mm diameter</td>
<td>$305</td>
</tr>
<tr>
<td>Hg</td>
<td>Aldrich</td>
<td>1 kg</td>
<td>$422</td>
</tr>
<tr>
<td>Al, Mg, Ni, Cu, Pb, Sn, Fe, Zn</td>
<td>many</td>
<td>1 lb</td>
<td><$10</td>
</tr>
</tbody>
</table>

3. Electrode Degradation

Platinum anode

Pt is known to be corroded slowly in the presence of halide ion. (corrosion rate: 5mgA⁻¹h⁻¹ in the electrolysis of 8 M HCl for 80 h)

Graphite anode

Generally, graphite is not tolerated under strongly oxidizing conditions or high voltage due to the formation of graphene oxide.

Glassy carbon anode

OH radical can cause erosion of glassy carbon

Conditions: H₂O₂, Fe(NH₄)₂(SO₄)₂ and EDTA in 0.01 M acetate buffer

Micrographs of GC surface: before treatment (left), after 60 min (right)

BDD anode

BDD is also known to be eroded under harsh electrrchemical conditions.

Before electrolysis

After severe anodic polarization at 1Acm⁻² in 1 M HClO₄ for 576 h at 40 °C
4. Selected Electroorganic Reactions and Suitable Electrodes

4-1. Anodic oxidation

Oxidation of carboxylic acids (Kolbe reaction)

\[
\text{RCOO}^- \xrightarrow{\text{anodic oxidation}} \text{R}^+ \xrightarrow{-\text{CO}_2} \text{R} \quad \text{MeOH, c.c., undivided cell}
\]

Anode: Pt (most common), Glassy carbon
Cathode (not critical): Pt, carbon, Fe, Hg etc.

Heterocoupling

\[
\text{COOH} \xrightarrow{\text{Pt anode}} \text{MeONa} \quad \text{MeOH, c.c., undivided cell}
\]

Steel cathode was chosen to avoid catalytic hydrogenation of the double bond.

Cascade cyclization

\[
\text{Pt anode steel cathode} \quad \text{MeOH, c.c., undivided cell}
\]

Application to total synthesis

\[
\text{Anode: Pt, graphite} \quad \text{ graphene anode graphite cathode} \\
\text{MeOH, KI, c.c., undivided cell}
\]

Regioselectivity of methoxylation is usually kinetic control, i.e., less substituted \(\alpha\)-position is functionalized preferentially.

Effects of anode material

\[
\text{Pt cathode} \quad \text{MeOH, EtOH, c.c., undivided cell}
\]

Late-stage functionalization of polycyclic lactams
Aubé, Angew. Chem. 2015, 127, 10701.

\[
\text{graphite anode graphite cathode} \quad \text{LiClO}_4, \text{MeOH} \text{ c.c. undivided cell}
\]

A mobile phone charger was used as a power supply.

A mobile phone charger was used as a power supply.
Electroorganic Chemistry: Choice of Electrodes

Oxidation of peptides

\[
\text{PhNHCO}_2\text{Me} + \text{Et}_4\text{NCl, MeCN/MeOH c.c., undivided cell} \rightarrow \text{MeCONHMeCO}_2\text{Me} 84\% (1.5:1 dr)
\]

Unusual oxidation

Application to a natural product synthesis

C-H arylation

C-H amination

Oxidation of electron-rich \(\pi \)-system

Anode: Pt, graphite, RVC, BDD
Cathode: Pt, graphite

Proposed mechanism:

- **N-Br bond homolysis**
 - Hofmann-Loffler-Freytag

- **X+ MeOH**
 - NHTs

- **MeONa, MeOH c.c., undivided cell**
 - additive: KBr, KI
 - 30% 82%
 - 22%
 - -

- **carbon felt anode Pt cathode**
 - additive: \(\text{Bu}_4\text{NB(C}_6\text{F}_5\text{)}_4 \)
 - radical cation (1 eq.)
 - naphthalene
 - 73%
 - 9 other examples

- **carbon felt anode Pt cathode**
 - pyridine
 - piperidine
 - 99%
 - 12 other examples
Organocatalyzed oxidation

\[
\text{R} + R'\text{OH} \rightarrow \text{ROR'}
\]

10 mol% cat., DBU, TBAB

\text{BF}_4^- \quad \text{c.p., undivided cell}

> 20 examples

Graphite cathode gave inferior effect due to the sluggish \(\text{H}_2 \) evolution.

Oxidation of other compounds

Though choice of electrodes varies, Pt is often the first choice for anode.

Electrochemical aziridination

\[
\text{N}=\text{NH}_2 + \text{HNEt}_3\text{OAc, MeCN c.p., divided cell} \rightarrow \text{Phth}\text{=N} \quad 85\%
\]

13 other examples

This reaction didn't work with graphite anode due to competing alkene oxidation on graphite.

Coupling of phenols on BDD

\[
\text{BDD anode} \quad \text{Ni cathode} \quad [\text{Et}_3\text{NMe}]\text{O}_3\text{SMe} \quad \text{H}_2\text{O}, 70^\circ \text{C} \quad \text{c.c., undivided cell} \rightarrow \text{Me} \quad \text{HO} \quad \text{Me} \quad 49\%
\]

was obtained with Pt anode.

Oxidation of phosphorus

\[
\text{graphite anode} \quad \text{graphite cathode} \quad 3 \text{ eq. } \text{nBu}_3\text{P} \quad 2 \text{ eq. } \text{MeSO}_3\text{H} \quad \text{BnNEt}_3\text{Cl}, \text{CH}_2\text{Cl}_2 \quad \text{undivided cell, c.c.} \rightarrow \text{6} \quad 63\% \quad (\text{trans:cis}=81:19)
\]

6 other examples

Effects of anode material

\[
\begin{align*}
\text{Me} & \quad \text{Pt cathode} \\
\text{Me} & \quad \text{Pt anode} \\
\text{Me} & \quad \text{Glassy carbon}
\end{align*}
\]

anode:

\[
\begin{align*}
\text{anode:} & \quad \text{Pt} \\
\text{anode:} & \quad \text{Glassy carbon}
\end{align*}
\]

3/4 = 4.4 (19% yield)

3/4 = 21 (35% yield)

Generation of MeO\(^*\) was confirmed in the case of Pt and BDD as anode.
Mechanism:

- Oxidation of sulfur

- Reduction of esters

- Reduction of amides

4.2. Cathodic reduction

Reduction of carbonyl group
- Anode: Pt, graphite, sacrificial anodes
- Cathode: Hg, Sn, Mg, Pb, Pt, graphite

Reductive cyclization of ketones

- 6-membered & piperidine ring formation and transannular cyclization were also demonstrated.
Reduction of alkenes and conjugated alkenes

Anode: Pt, graphite, sacrificial anodes

Cathode: Hg, Sn, Mg, Pb, Zn, Pt, graphite

Reduction of dienes

\[
\text{Mg anode} \quad \text{Mg cathode} \quad \text{LiClO}_4, \text{THF} \quad \text{c.c., undivided cell} \quad \text{intermediate} \]

62%

Pt, Al, Zn, Ni, Cu, Pb as cathode • • 0%

Reduction of unsaturated esters

- Dimerization

\[
\text{Pt anode} \quad \text{Cu cathode} \quad \text{TBAOTs, DMF} \quad \text{c.p. divided cell} \]

76%

Natural product synthesis

An example of notable anode effect

\[
\text{Al anode steel cathode} \quad \text{NBu}_4\text{BF}_4, \text{NBu}_4\text{I} \quad \text{NMP}, \text{c.c.} \quad \text{undivided cell} \]

50%

Mg, Zn anode • • • yield <10%

Reduction of other compounds

Anode: Pt, graphite, sacrificial anodes

Cathode: Materials with large H\textsubscript{2} overpotential

Reductive carbon-halogen bond cleavage

Birch reduction

Electrochemical transition-metal catalysis

Mechanism:

\[\text{NiBr}_2(bpy) \rightarrow \text{Ni}(0) \rightarrow \text{Ni-Ph} \rightarrow R-Cl \rightarrow R-\text{Ph} \]
\[\text{Ph}^{\text{II}} \rightarrow \text{Ni-Ph} \rightarrow R-\text{Cl} \rightarrow \text{cathodic reduction} \]

This step might be similar to Weix’s system.

Summary

Anode material

Do you use sacrificial anode?

- Yes
 - Al, Zn, Mg, Fe etc.
 - Pt, carbon based material
- No: I don’t know

Cathode material

Is your target reaction reduction?

- Yes
 - \(R-\text{Cl} \rightarrow R-\text{Ph} \)
- No: I don’t care

Is \(H_2 \) evolution OK?

- Yes
 - Whatever conductive
 - Pt, Ni, Fe and other material with small \(H_2 \) overpotential
- No
 - carbon based material and other material with large \(H_2 \) overpotential

Useful material for electroorganic synthesis

- Redox potential of organic compounds
 Nicewicz, Synlett, 2016, 27, 714.

Reviews for further study

- Indirect (mediated) electrolysis

- Application to complex molecule syntheses
 (b) Moeller, Tetrahedron, 2000, 56, 9527.

- Electrochemical halogenation

- Electrochemistry with transition-metal catalysis